BACT Size: Minor Source BACT 145 BACT Determination Date: 1/13 BACT Determination Number: 145 BACT Determination Date: 1/13 Equipment Description: PET CREMATORY Unit Size/Rating/Capacity: 19,710 MMBtu NG/yr and <= 681 ton charge/yr Equipment Location: TREASURED PETS 4601 PELL DR SACRAMENTO, CA BACT Determination Information ROCs Standard: No Standard Technology Natural gas fired and secondary combustion chamber (afterburner) => 1600F Description: Basis: Achieved in Practice NOX Standard: 00 ppm at 3% C2 or 0.073 lb/MMBtu Technology => 1200F Description: Basis: Achieved in Practice SOX Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM10 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2,5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2,5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2,5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2,5 Standard: No Standard Technology Secondary chamber operating at => 1600F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Secondary chamber => 1500F Basis: Achieved in Practice LEAD Standard: In Standard Technology Secondary chamber => 1500F Basis: Achieved in Practice CO Standard: No Standard Technology Description: Basis: Achieved in Practice CO Standard: No Standard Technology Secondary chamber => 1500F Basis: Achieved in Practice Technology Description: Basis: Achieved in Practice CO Standard: In Standard: No Standard II Technology Description: Basis: Achieved in Practice CO Standard: No Standard II Technology Description: Basis: Achieved in	CATEGOR	Y:	INCINE	RATOR/CREMATORY
Equipment Information Permit Number: 25091 Equipment Description: PET CREMATORY Unit Size/Rating/Capacity: 19,710 MMBtu NG/yr and <= 681 ton charge/yr Equipment Location: TREASURED PETS 4601 PELL DR SACRAMENTO, CA BACT Determination Information ROCs Standard: No Standard Description: Basis: Basis: Achieved in Practice NOx Standard: 60 ppm at 3% C2 or 0.073 to/MMBtu Description: Basis: Achieved in Practice Basis: Achieved in Practice Socondard Sox Standard: No Standard Description: Basis: Achieved in Practice Basis: Achieved in Practice Socondard PM10 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F <th>BACT Size:</th> <th>Minor Source</th> <th></th> <th>PET CREMA</th>	BACT Size:	Minor Source		PET CREMA
Permit Number: 25091 Equipment Description: PET CREMATORY Unit Size/Rating/Capacity: 19,710 MMBtu NG/yr and <= 681 ton charge/yr	BACT Det	ermination Numb	er: 145	BACT Determination Date: 1/13/2
Equipment Description: PET CREMATORY Unit Size/Rating/Capacity: 19,710 MMBtu NG/yr and <= 681 ton charge/yr TREASURED PETS 4601 PELL DR SACRAMENTO, CA BACT Determination Information ROCs Standard: No Standard Technology Natural gas fired and secondary combustion chamber (afterburner) => 1600F Description: Basis: Achieved in Practice NOX Standard: 00 ppm at 3% O2 or 0.073 lb/MMBtu Technology => 1200F Description: Basis: Achieved in Practice SOX Standard: No Standard Technology a=> 1200F Description: Basis: Achieved in Practice SOX Standard: No Standard Technology Natural gas fired Description: Basis: Achieved in Practice PM10 PM10 PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice LEAD Standard: No Standard Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice CO Standard: Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice CO Standard: No Standard to be equivalent to Basis Achieved in Practice CO Standard: Standard: Standard: Standard: Standard: Standard: Standard: Standard: Standard: Standard: Standard: Standard: Standard: Standard: Standard: Standard:			Equipme	ent Information
Unit Size/Rating/Capacity: 19,710 MMBtu NG/yr and <= 681 ton charge/yr	Permit Nu	mber: 25091		
Equipment Location: TREASURED PETS 4601 PELL DR SACRAMENTO, CA BACT Determination Information ROCs Standard: No Standard Technology Description: Basis: Achieved in Practice NOX Standard: 60 ppm at 3% O2 or 0.073 lb/MMBtu Technology is 1200F Description: Basis: Achieved in Practice SOX Standard: No Standard Technology Natural gas fired Description: Basis: Achieved in Practice SOX Standard: No Standard Technology Natural gas fired Description: Basis: Achieved in Practice SOX Standard: No Standard Technology Natural gas fired Description: Basis: Achieved in Practice PM10 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2.5 Standard: No Standard PM2.5 Standard: No Standard PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2.5 Standard: No Standard PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice LEAD Standard: No Standard Standard: No Standard Stabel No Norther => 1500F Description: Basis: Achieved in Practice LEAD Standard: No Standard Stabel No Norther => 1500F Description: Basis: Achieved in Practice COM Standard: No Standard Stabel No Norther Active Actieve Norther Active Actieve Norther Active Actieve Norther Active Active Norther Active Actieve Norther Active Actieve Norther Actieve Act	Equipmen	t Description:	PET CREMATORY	
4601 PELL DR SACRAMENTO, CA BACT Determination Information ROCs Standard: No Standard Technology Description: Basis: Achieved in Practice NOX Standard: 60 ppm at 3% O2 or 0.073 lb/MMBtu Technology Description: Basis: Achieved in Practice NOX Standard: No Standard Technology Description: Basis: Achieved in Practice SOX Standard: No Standard Description: Basis: Achieved in Practice PM10 Standard: No Standard Description: Basis: Achieved in Practice PM2.5 Standard: No Standard Not Standard: No Standard Description: Basis: Achieved in Practice PM2.5 Standard: No Standard Description: No Stand	Unit Size/I	Rating/Capacity:	19,710 MMBtu NG/y	/r and <= 681 ton charge/yr
SACRAMENTO, CA BACT Determination Information ROCs Standard: No Standard Technology Natural gas fired and secondary combustion chamber (afterburner) => 1600F Description: Basis: Achieved in Practice NOx Standard: 60 ppm at 3% O2 or 0.073 lb/MMBtu Description: = 1200F Description: = 1200F Description: = 1200F Basis: Achieved in Practice SOx Standard: No Standard Technology Natural gas fired Description: Basis: Achieved in Practice PM10 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice CO Standard: No Standard Technolo	Equipmen	t Location:	TREASURED PETS	3
BACT Determination Information ROCs Standard: No Standard Technology Description: Natural gas fired and secondary combustion chamber (afterburner) => 1600F Basis: Achieved in Practice NOx Standard: 60 ppm at 3% O2 or 0.073 lb/MMBtu Description: => 1200F Description: => Basis: Achieved in Practice SOx Standard: No Standard Technology Description: => Basis: Achieved in Practice SOx Standard: No Standard Technology Natural gas fired => Description: Basis: Achieved in Practice PM10 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice CO Standard: No Stan				
Standard: No Standard Technology Description: Natural gas fired and secondary combustion chamber (afterburner) => 1600F Basis: Achieved in Practice NOx Standard: 60 ppm at 3% O2 or 0.073 lb/MMBtu Technology Description: => 1200F Basis: Achieved in Practice Sox Standard: No Standard Technology Description: No Standard Basis: Achieved in Practice Sox Standard: No Standard Technology Description: Natural gas fired Basis: Achieved in Practice PM10 Standard: No Standard Technology Description: Natural gas fired with secondary chamber operating at => 1600F Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Description: Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Description: Secondary chamber => 1500F Basis: Ach				
ROCs Standard: Natural gas fired and secondary combustion chamber (afterburner) => 1600F Description: Basis: Achieved in Practice NOx Standard: 60 ppm at 3% O2 or 0.073 lb/MMBtu Technology => 1200F Description: Basis: Basis: Achieved in Practice SOX Standard: No Standard Technology Natural gas fired Description: Basis: Achieved in Practice SOX Standard: No Standard Technology Natural gas fired Description: Basis: Achieved in Practice PM10 Standard: No Standard No Standard PM2.5 Standard: No Standard PM2.5 Standard: No Standard Basis: Achieved in Practice PM2.5 Standard: No Standard No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Description: Basis:			BACT Determi	nation Information
Technology Description: Natural gas fired and secondary combustion chamber (afterburner) => 1600F Basis: Achieved in Practice NOX Standard: 60 ppm at 3% O2 or 0.073 lb/MMBtu Technology Description: => 1200F Basis: Achieved in Practice SOX Standard: No Standard Technology Description: No Standard Technology Description: No Standard Basis: Achieved in Practice RM10 Standard: No Standard Technology Description: No Standard Technology Description: No Standard Basis: Achieved in Practice PM10 Standard: No Standard Technology Description: No Standard Basis: Achieved in Practice CO Standard: No Standard Technology Description: Secondary chamber => 1500F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Description: Secondary chamber => 1500F Description:	ROCs	Standard:	No Standard	
Basis: Achieved in Practice NOx Standard: 60 ppm at 3% O2 or 0.073 lb/MMBtu Technology => 1200F Description: Basis: Achieved in Practice SOx Standard: No Standard Technology Natural gas fired Description: Basis: Achieved in Practice Basis: Achieved in Practice PM10 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM10 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice <td></td> <td>•••</td> <td>Natural gas fired and secon</td> <td>idary combustion chamber (afterburner) => 1600F</td>		•••	Natural gas fired and secon	idary combustion chamber (afterburner) => 1600F
NOx Standard: 60 ppm at 3% O2 or 0.073 lb/MMBtu Technology Description: => 1200F Basis: Achieved in Practice SOx Standard: No Standard Technology Description: Natural gas fired Description: Basis: Achieved in Practice PM10 Standard: No Standard PM10 Standard: No Standard PM2.5 Standard: No Standard PM2.5 Standard: No Standard PM2.5 Standard: No Standard PM2.6 Standard: No Standard PM2.7 Standard: No Standard PM2.8 Standard: No Standard PM2.9 Standard: No Standard		Description:		
NOX Technology Description: => 1200F Basis: Achieved in Practice SOx Standard: No Standard Technology Description: Natural gas fired Basis: Achieved in Practice PM10 Standard: No Standard PM10 Standard: No Standard PM2.5 Standard: Achieved in Practice CO Standard: No Standard PM2.5		Basis:		
Description: Basis: Achieved in Practice SOX Standard: No Standard Technology Natural gas fired Description: Basis: Achieved in Practice PM10 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM10 Standard: No Standard PM2.5 Standard: No Standard PM2.5 Standard: No Standard Basis: Achieved in Practice PM2.5 Standard: No Standard Basis: Achieved in Practice CO Standard: No Standard Basis: Achieved in Practice LEAD Secondary chamber => 1500F Description: Basis: Achieved in Practice LEAD Standard: No Standard Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice Comments: Nox standard in Practice	NOx			lb/MMBtu
Basis: Achieved in Practice SOx Standard: No Standard Technology Natural gas fired Description: Basis: Achieved in Practice PM10 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2.5 Standard: No Standard PM2.5 Standard: No Standard PM2.5 Standard: No Standard Basis: Achieved in Practice Description: Basis: Achieved in Practice CO Standard: No Standard Basis: Achieved in Practice CO Standard: No Standard Basis: Achieved in Practice LEAD Standard: No Standard Description: Basis: Achieved in Practice LEAD Standard: No Standard Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice <td></td> <td></td> <td>=> 1200F</td> <td></td>			=> 1200F	
Standard: No Standard SOx Standard: No Standard Technology Natural gas fired Basis: Achieved in Practice PM10 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice Basis: Achieved in Practice CO Standard: No Standard Secondary chamber => 1500F Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice LEAD Standard:		-	Achieved in Drestice	
SOX Standard: Natural gas fired Technology Natural gas fired Basis: Achieved in Practice PM10 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Basis: Achieved in Practice Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice Description: Basis: Achieved in Practice CO Standard: No Standard Technology Description: Basis: Basis: Achieved in Practice CO Standard: No Standard Technology Description: Basis: Basis: Achieved in Practice Image: Standard LEAD Standard: Technology Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice Standard: Tec				
Description: Basis: Achieved in Practice PM10 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice Comments: Nox standard Technology Description: Basis: Achieved in Practice Basis: Achieved in Practice Standard:	SOx			
Basis: Achieved in Practice PM10 Standard: No Standard Technology Description: Natural gas fired with secondary chamber operating at => 1600F Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Description: Natural gas fired with secondary chamber operating at => 1600F Description: Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Description: Secondary chamber => 1500F Description: Basis: Achieved in Practice LEAD Standard: No Standard Technology Description: Secondary chamber => 1500F Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice Standard: Comments: Nox standard is based on emissions from natural gas combustion only (not with the charge). BACT was based on a bumer rating of 4.5 MMBtu/hr operating at 4,380 hours/year (19,710 MMBtu/year) for natural gas combustion and a rate of 681 ton/year for the combustion of the animals. TBACT was determined to be equivalent to BACT. BACT <			Natural gas filed	
PM10 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice Comments: Nox standard is based on emissions from natural gas combustion only (not with the charge). BACT was based on a burner rating of 4.5 MMBtu/hr operating at 4,380 hours/year (19,710 MMBtu/year) for natural gas combu			Achieved in Practice	
Technology Natural gas fired with secondary chamber operating at => 1600F Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Natural gas fired with secondary chamber operating at => 1600F Description: Basis: Achieved in Practice Basis: Achieved in Practice CO Standard: No Standard Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice CO Standard: No Standard Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice Comments: Nox standard is based on emissions from natural gas combustion only (not with the charge). BACT was based on a burner rating of 4.5 MMBtu/hr operating at 4.380 hours/year (19,710 MMBtu/year) for natural gas combustion and a rate of 681 ton/year for the combustion of the animals. TBACT was determined to be equivalent to BACT. BACT	DM10		No Standard	
Basis: Achieved in Practice PM2.5 Standard: No Standard Technology Description: Natural gas fired with secondary chamber operating at => 1600F Basis: Achieved in Practice CO Standard: No Standard Technology Description: Secondary chamber => 1500F Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Nox standard is based on emissions from natural gas combustion only (not with the charge). BACT was based on a a burner rating of 4.5 MMBtu/hr operating at 4,380 hours/year (19,710 MMBtu/year) for natural gas combustion and a rate of 681 ton/year for the combustion of the animals. TBACT was determined to be equivalent to BACT. BACT			Natural gas fired with secor	ndary chamber operating at => 1600F
PM2.5 Standard: Natural gas fired with secondary chamber operating at => 1600F Technology Description: Basis: Achieved in Practice CO Standard: No Standard Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice LEAD Standard: No Standard Technology Secondary chamber => 1500F Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice Comments: Nox standard is based on emissions from natural gas combustion only (not with the charge). BACT was based on a burner rating of 4.5 MMBtu/hr operating at 4,380 hours/year (19,710 MMBtu/year) for natural gas combustion and a rate of 681 ton/year for the combustion of the animals. TBACT was determined to be equivalent to BACT. BACT			Achieved in Practice	
Technology Description: Natural gas fired with secondary chamber operating at => 1600F Basis: Achieved in Practice CO Standard: No Standard Technology Description: Secondary chamber => 1500F Basis: Achieved in Practice Basis: Achieved in Practice LEAD Standard: Technology Description: Achieved in Practice LEAD Standard: Technology Description: Achieved in Practice Comments: Nox standard is based on emissions from natural gas combustion only (not with the charge). BACT was based on a burner rating of 4.5 MMBtu/hr operating at 4,380 hours/year (19,710 MMBtu/year) for natural gas combustion and a rate of 681 ton/year for the combustion of the animals. TBACT was determined to be equivalent to BACT. BACT	PM2.5	Standard:	No Standard	
CO Standard: No Standard Technology Secondary chamber => 1500F Description: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Achieved in Practice Comments: Nox standard is based on emissions from natural gas combustion only (not with the charge). BACT was based on a burner rating of 4.5 MMBtu/hr operating at 4,380 hours/year (19,710 MMBtu/year) for natural gas combustion and a rate of 681 ton/year for the combustion of the animals. TBACT was determined to be equivalent to BACT. BACT	-		Natural gas fired with secor	ndary chamber operating at => 1600F
CO Standard: Technology Description: Secondary chamber => 1500F Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Image: Comment in the practice in the practine in the practice in the practice in the practice in		Basis:	Achieved in Practice	
Description: Description: Basis: Achieved in Practice LEAD Standard: Technology Description: Basis: Basis: Comments: Nox standard is based on emissions from natural gas combustion only (not with the charge). BACT was based on a burner rating of 4.5 MMBtu/hr operating at 4,380 hours/year (19,710 MMBtu/year) for natural gas combustion and a rate of 681 ton/year for the combustion of the animals. TBACT was determined to be equivalent to BACT. BACT	со	Standard:		
LEAD Standard: Technology Description: Basis: Comments: Nox standard is based on emissions from natural gas combustion only (not with the charge). BACT was based on a burner rating of 4.5 MMBtu/hr operating at 4,380 hours/year (19,710 MMBtu/year) for natural gas combustion and a rate of 681 ton/year for the combustion of the animals. TBACT was determined to be equivalent to BACT. BACT)0F
Technology Description: Basis: Comments: Nox standard is based on emissions from natural gas combustion only (not with the charge). BACT was based on a burner rating of 4.5 MMBtu/hr operating at 4,380 hours/year (19,710 MMBtu/year) for natural gas combustion and a rate of 681 ton/year for the combustion of the animals. TBACT was determined to be equivalent to BACT. BACT			Achieved in Practice	
Description: Basis: Comments: Nox standard is based on emissions from natural gas combustion only (not with the charge). BACT was based on a burner rating of 4.5 MMBtu/hr operating at 4,380 hours/year (19,710 MMBtu/year) for natural gas combustion and a rate of 681 ton/year for the combustion of the animals. TBACT was determined to be equivalent to BACT. BACT	LEAD			
Comments: Nox standard is based on emissions from natural gas combustion only (not with the charge). BACT was based on a burner rating of 4.5 MMBtu/hr operating at 4,380 hours/year (19,710 MMBtu/year) for natural gas combustion and a rate of 681 ton/year for the combustion of the animals. TBACT was determined to be equivalent to BACT. BACT		Description:		
burner rating of 4.5 MMBtu/hr operating at 4,380 hours/year (19,710 MMBtu/year) for natural gas combustion and a rate of 681 ton/year for the combustion of the animals. TBACT was determined to be equivalent to BACT. BACT		Basis:		
determination was processed under A/Cs 25086 & 25091. District Contact: Felix Trujillo Phone No.: (916) 874 - 7357 email: ftrujillo@airquality.org		burner rating of 4.5 rate of 681 ton/yea determination was	MMBtu/hr operating at 4,380 r for the combustion of the an processed under A/Cs 25086	hours/year (19,710 MMBtu/year) for natural gas combustion and a ch imals. TBACT was determined to be equivalent to BACT. BACT & 25091.

SACRAMENTO METROPOLITAN

BEST AVAILABLE CONTROL TECHNOLOGY & TOXIC BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION

	DETERMINATION NO.:	145	
	DATE:	December 13, 2016	
	ENGINEER:	Felix Trujillo, Jr.	
Category/General Equip Description:	Pet Crematory		
Equipment Specific Description:	Pet Crematory Minor Source BACT;4.5 MMBtu/hr Burners @ 4,380 hours/year of operation (19,710 MMBtu/year) and ≤		
Equipment Size/Rating:	681 Tons Charge/year	, minibita, your) and =	
Previous BACT Det. No.:	N/A		

A review of the SVCAPCD, SCAQMD and BAAQMD BACT Clearinghouses showed no distinction between a pet crematory and human crematory. A prior version (BACT No. 1.9.3.A) of the SJVAPCD's crematory BACT was based on a pet crematory. The SMAQMD performed a BACT determination (No. # 133) for a Human crematory on 7/12/16. Therefore, BACT No. 133 will be referenced for this new BACT.

This BACT was determined under the project for A/C's 25086 & 25901 (Treasured Pets). The BACT was based on the largest crematory (A/C 25091).

BACT ANALYSIS

A: ACHIEVED IN PRACTICE (Rule 202, §205.1a)

The following control technologies are currently employed as BACT for crematories.

BACT & T-BACT Determination Pet Crematory December 13, 2016 Page 2 of 26

District/ Agency	Best Ava	ailable Control Technology (BACT) Requirements
US EPA	BACT Source: E Cremato VOC NOx SOx PM10 PM2.5 CO	EPA/ RACT/BACT/LEAR Clearinghouse

District/ Agency	Best Available Control Technology (BACT)/ Requirements		
	BACT		
	Source: ARB BACT Clearinghouse		
	Crematory		
	VOC	No Standard	
	NOx	No Standard	
	SOx	No Standard	
ARB	PM10	No Standard	
AND	PM2.5	No Standard	
	CO	No Standard	
	<u>Rule Reg</u> None	<u>uirements</u>	

District/ Agency	Best Available Control Technology (BACT)/ Requirements			
	BACT	MAQMD BACT #133 issued on 7/21/16		
	VOC	No Standard, Natural gas-fired with secondary chamber operating at \geq 1600 °F.		
	NOx	60 ppm @ 3% O2 or 0.073 lb/MMBtu		
	SOx	No Standard, Natural Gas Fired		
SMAQMD	PM10	No Standard, Natural gas-fired with secondary chamber operating at ≥1600 °F		
	PM2.5	No Standard		
	CO	No Standard, Secondary Chamber ≥ 1500 °F		
	Rule Rec None	uirements		

District/ Agency	Best Available Control Technology (BACT)/ Requirements			
	BACT			
From SCAQMD BACT Guidelines for Non Major Polluting Facilitie				
	VOC	No Standard, Natural Gas, Secondary Chamber ≥ 1500 °F		
	NOx	No Standard, Natural Gas		
	SOx	No Standard, Natural Gas		
	PM10	No Standard, Natural Gas, Secondary Chamber ≥ 1500 °F		
	PM2.5	No Standard		
	CO	No Standard		
(9/9/11) The purpose of this rule is to reduce nitrogen oxide liquid fuel fired combustion equipment as defined than on or after January 1, 2010 any person ownin the rule shall not operate the unit in a manner that e oxide emission limits specified in table 1 at the tin for operation of a new, relocated or modified unit crematories fired at greater than or equal to 1200 of O ₂ or 0.073 lb/MMBtu, Per Table 1 of this rule. A p Hollinshead, 909-396-2275), permitting departm standard is for the burner operation only and not		Description XI, Rule 1147 NOx Reductions from Miscellaneous Sources obse of this rule is to reduce nitrogen oxide emissions from gaseous and I fired combustion equipment as defined in the rule. The rule requires r after January 1, 2010 any person owning or operating a unit subject to hall not operate the unit in a manner that exceeds the applicable nitrogen ission limits specified in table 1 at the time a District permit is required tion of a new, relocated or modified unit. New, modified or relocated es fired at greater than or equal to 1200 °F cannot exceed 60 ppm at 3% 73 lb/MMBtu, Per Table 1 of this rule. A phone call to SCAQMD (Derek ad, 909-396-2275), permitting department confirmed that the NOx is for the burner operation only and not the cremation process (from termination #133).		

BACT & T-BACT Determination Pet Crematory December 13, 2016 Page 4 of 26

Table 1 –	NOx Emission Limit			
NOx	PPM @ 3% O ₂ , dry or Pound/mmBtu heat input			
Emission Process Temperature				
Limit				
Equipment				
Category(ies)				
Gaseous	≤ 800° F	$> 800 \circ F$	≥1200 °	
Fuel-Fired		and <	F	
Equipment		1200° F		
Afterburner,	30 ppm or 0.036 lb/mmBtu	60 ppm	60 ppm	
Degassing Unit,	50 ppm of 0.050 lb/ minbtu	or 0.073	or 0.073	
Remediation		lb/mmBtu	lb/mmBtu	
Unit, Thermal		10/ IIIIIDtu	10/ mmbtu	
Oxidizer,				
Catalytic				
Oxidizer or				
Oxidizer or Vapor Incinerator ¹				

District/ Agency	Best Available Control Technology (BACT)/ Requirements		
		DCAPCD NSR Requirements for BACT	
		No Standard No Standard	
	SOx	No Standard	
San Diego County APCD	PM10	No Standard	
	PM2.5	No Standard	
	CO	No Standard	
	<u>Rule Reo</u> None	uirements	

District/ Agency	Best Available Control Technology (BACT)/ Requirements		
	BACT From BA	AAQMD BACT Guideline – Crematory	
	VOC NOx	No Standard, Secondary Combustion ≥ 1500 °F No Standard, Natural Gas Fired	
	SOx	No Standard, Natural Gas Fired	
Bay Area	PM10	No Standard, Secondary Combustion ≥ 1600 °F (set Point at 1650 °F)	
AQMD	PM2.5	No Standard	
	CO	No Standard, Secondary Chamber ≥ 1500 °F	
	<mark>Rule Req</mark> None	uirements	

District/ Agency	Best Ava	ailable Control Technology (BACT)/ Requirements	
	BACT		
	From SJVAPCD BACT Guidelines – Crematory – Natural Gas Fired		
	VOC	No Standard, Natural gas fuel and a secondary combustion chamber	
		(afterburner) ≥ 1600 °F	
	NOx	No Standard, Natural Gas Fuel	
	SOx	No Standard, Natural Gas Fuel	
San Joaquin	PM10	No Standard, Natural gas fuel and a secondary combustion chamber	
		(afterburner) ≥ 1600 °F	
Valley APCD			
	PM2.5	No Standard	
	CO	No Standard	
	Rule Requirements		
	None		

The following control technologies have been identified and are ranked based on stringency:

	SUMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES						
VOC	No Standard						
	1)Natural gas fuel and a secondary combustion chamber (afterburner) ≥ 1600 °F, SMAQMD, SJVUAPCD						
	2)Natural gas fuel and a secondary combustion chamber (afterburner) ≥ 1500 °F, SMAQMD, BAAQMD						
NOx	60 ppm at 3% O2 or 0.073 lb/MMBTU measurement of the fuel burned only, SCAQMD						
SOx	No Standard, Natural Gas Fuel.						
PM10	No Standard,						
	 Natural gas-fired with secondary chamber operating at ≥1600 °F SMAQMD, 						
	SJVAPCD, BAAQMD						
	 Natural Gas, Secondary Chamber ≥ 1500 °F, SCAQMD 						
PM2.5	No Standard						
CO	No Standard, Secondary Chamber ≥ 1500 °F, BAAQMD						

The following control technologies have been identified as the most stringent, achieved in practice control technologies:

	BEST CONTROL TECHNOLOGIES ACHIEVED					
Pollutant	Standard	Source				
VOC	No Standard, Natural gas fuel and a secondary combustion chamber (afterburner) ≥ 1600 °F	SMAQMD, SJVUAPCD				
NOx	60 ppm at 3% O2 or 0.073 lb/MMBTU at a process temperature of ≥ 1200 °F	SCAQMD				
SOx	No Standard, Natural Gas Fired	SCAQMD, SMAQMD, BAAQMD, SJVAPCD				
PM10	No Standard, Natural gas-fired with secondary chamber operating at ≥1600 °F	SMAQMD, SJVAPCD, BAAQMD				
PM2.5	No Standard					
CO	No Standard, Secondary Chamber ≥ 1500 °F	BAAQMD				

B. TECHNOLOGICALLY FEASIBLE AND COST EFFECTIVE (Rule 202, §205.1.b.):

Technologically Feasible Alternatives:

Any alternative basic equipment, fuel, process, emission control device or technique, singly or in combination, determined to be technologically feasible and cost effective by the Air Pollution Control Officer.

Updated in 2005, the SJVAPCD lists the use of a baghouse with a dry scrubber or a wet scrubber as technologically feasible for the control of SOx, the use of a venturi scrubber for the control of PM10 and the use of selective catalytic reduction (SCR) or a low NOx burner for the control of NOx. The control strategies appear to be carryovers from other natural gas combustion operations and do not appear to be fully evaluated for a crematory. The BAAQMD evaluated the same source category in 2007 and do not list a baghouse, venturi scrubber, the use of an SCR or a low NOx burner as technologically feasible options. No other district lists these options as technologically feasible either. Additionally SMAQMD contacted SJVAPCD (Manuel Salinas, 559-230-5833) and verified that an SCR, low NOx burner, baghouse or scrubber has not been installed on any crematories to date. Irrespective of the discussion above that questions San Joaquin's intent for listing add on controls as being technologically feasible for a crematory application, the following analysis will assume that add on controls are technologically feasible and a cost effectiveness determination needs to be conducted to determine if add on controls are in fact considered cost effective. The driving factor for this BACT determination is the multipollutant cost effectiveness thresholds for SOx and PM10 calculated down below. The limiting factor was based on yearly cremation of 681 tons/year and assuming the 4.5 MMBtu/hr burners operate 12 hours/day and 365 days/year. The life of the equipment was based on the life recommended in the cost manual. The interest was based on the previous 6-month average interest rate on US Treasury Securities + 2 points and rounding up to the next integer rate. The labor costs were based on data from the Bureau of Labor Statistics (operating labor: Occupation Code 49-9099, maintenance labor: Occupation Code 51-9051).

BACT & T-BACT Determination Pet Crematory December 13, 2016 Page 8 of 26

NOx:

A cost effectiveness analysis was done to determine if an SCR system could be considered cost effective to control the NOx from a crematory and is calculated in Appendix A of this document. The crematory is estimated to have a burner that when fired only on natural gas with no body will emit NOx at less than 60 PPM. To estimate the NOx emissions attributed to the burning of the charge, AP-42 Chapter 2.3 - Medical Waste Incineration Table 2.3-1 was used. This value for NOx is 3.56 lb of NOx per ton of charge. The NOx emissions from natural gas coumbustion were based on the total burner rating of 4.5 MMBtu/hr and an operation time of 12 hours/day and 365 days/year. As a worst case assumption, and consistent with the crematory permitting manual of the BAAQMD, the NOx emission factor that is used in this analysis will be the combined emission factor of 5.67 lb of NOx/ton of charge which includes the emission factor of natural gas combustion added to the emission factor from burning of the charge.

The total charge would be 720 tons per year. With an SCR NOx control efficiency of 90%, the NOx emissions from the crematory is calculated to be 0.19 tons per year (681*5.67*(1-0.9)/2000=0.19).

A cost for a SCR system was estimated using EPA's Cost Control Manual, 6th Edition. The SCR sizing criteria for which the costs are based are primarily determined from the exhaust flow rate and temperature. The spreadsheet that was used determines the flow rate from the burner rating. However, a crematory unit's flow rate is much larger than the flow rate estimated from the burner rating alone as it is dependent on exhaust generated from natural gas combustion, exhaust generated from the charge itself, and additional excess air. As a result, the analysis will utilize the actual average flow rate observed during source testing of an identical crematory unit (see Attachment B) and a calculated equivalent burner rating.

The total annualized cost for the SCR system is estimated to be 43,843.62. The total NOx controlled would be 1.74 tons per year (681*5.67*0.9/2000 = 1.74). The analysis shows the cost effectiveness calculation to be 25,245.92 per ton of NOx reduced. Since the District's cost effectiveness threshold for NOx is 24,500 per ton, the addition of the SCR would not be considered cost effective.

Total Annualized Cost of SCR	Quantity of NOx Controlled (TPY)	Cost of SCR per ton removed	SMAQMD cost effective threshold for NOx	Cost effective
\$43,843.62	1.74	\$25,245.92	\$24,500	No

PM:

A screening cost effectiveness analysis was done to determine if a baghouse could be considered cost effective to control the particulate from a crematory. This analysis will assume that the baghouse will collect 100% of the particulate emissions which would be approximately 1.755 tons/yr.

Based on EPA's Cost Control Manual, 6th Edition, the total annual cost of a baghouse needed to control the flow characteristics of a crematory is estimated to be approximately \$30,351.00. The total PM10 emissions controlled would be 1.664 tons/year. The analysis shows the cost effectiveness calculation to be \$18,239.78 per tons of PM10 reduced. Therefore, the conclusion

BACT & T-BACT Determination Pet Crematory December 13, 2016 Page 9 of 26

is that a baghouse used to control particulate matter for a crematory is not considered cost effective and as such will not be considered BACT. See Appendix A for cost analysis.

Total Annualized Cost of a Baghouse	Quantity of PM10 Controlled (TPY)	Cost of a Baghouse per ton removed	SMAQMD cost effective threshold for PM10	Cost effective
\$30,351.00	1.664	\$18,239.78	\$11,400	No

A screening cost effective analysis was done for a venturi scrubber using the EPA Cost Control Manual, 6th Edition. The entire PM quantity (filterable and condensable) was used for cost effectiveness determination. A venturi scrubber system sized to control 3,341 cfm of exhaust gas is estimated to cost \$55,050.82. The total annual cost is \$33,017.79. The total PM10 emissions controlled would be 1.664 tons/year. The analysis shows the cost effectiveness calculation to be \$19,842.42 per tons of PM10 reduced. Since the system costs are greater than the District's cost effectiveness criteria, a venturi scrubber is not considered cost effective.

Total Annualized Cost of Venturi Scrubber	Quantity of PM10 Controlled (TPY)	Cost of Venturi per ton removed	SMAQMD cost effective threshold for PM10	Cost effective
\$33,017.79	1.664	\$19,842.42	\$11,400	No

SOx:

A cost effectiveness analysis was done for the control of SOx with the use of a wet scrubber. Based on the information presented in the EPA Cost Control Manual, 6th Edition, the cost of the capital equipment was selected by using the lowest surface area and subsequent cost information available in this section of the manual. For SOx, the District's cost effectiveness threshold is \$18,300 per ton. The cost of the wet scrubber was estimated to have a total annual cost of \$32,659.42 and control efficiency was assumed to be 100%. The cost of the electricity was included. The cost of caustic was not considered. The total SOx emissions controlled is 0.745 tons/year. The cost per ton removed for this control was calculated to be \$43,838.15 and therefore is not considered to be cost effective.

Total	Quantity of SOx	Cost of wet	SMAQMD cost	Cost effective
Annualized Cost	Controlled per yr	scrubber per ton	effective	
of Wet Scrubber		removed	threshold for Sox	
\$32,659.42	0.745	\$43,838.15	\$18,300	No

The EPA Cost Control Manual, 6th Edition does not have a chapter on dry scrubbers. A dry scrubber consists of a dry reactant or powder injection system and a baghouse. Costs for a dry scrubber are estimated using the equipment costs of a baghouse. Since the reference manual does not have cost information for the powder injection system, powder storage silo and powder reactant. The cost of the blower fan for the injection system was assumed to be 1/3 the size of the fan of a wet scrubber in order to determine the annual costs of the electricity for this system.

BACT & T-BACT Determination Pet Crematory December 13, 2016 Page 10 of 26

The cost of the storage silo and powder reactant were not included. The total annualized costs are estimated to be \$32,636.24. The cost per ton of SOx removed is calculated to be \$43,807.03 and therefore is not considered to be cost effective.

Total Annualized Cost of dry scrubber	Quantity of SOx Controlled (TPY)	Cost of dry scrubber per ton removed	SMAQMD cost effective threshold for SOx	Cost effective
\$32,636.24	0.745	\$43,807.03	\$18,300	No

PM + SOx:

Per the SMAQMD Procedures for Making Best Available Control Technology (BACT) and Best Available Control Technology for Toxic (T-BACT) Determinations for New and Modified Emission Units (10/15), when a control technology is expected to control multiple forms of criteria pollutants both shall be assessed for cost effectiveness. In the case of a wet scrubber, the control of SOx, and PM10 should be considered. Per the calculation method found in the document, and assuming that 100% of PM10 and SOx is removed by the wet scrubber

Max Cost = \sum (Emissions Reduced * Cost Effectiveness Value) P = Each pollutant subject to BACT

Max Cost = (1.664 ton PM10/yr X \$11,400/ton PM) + (0.745 ton SOx/yr X \$18,300/ ton SOx) = \$32,603.10/yr

Since the annualized costs of a wet scrubber or a dry scrubber with baghouse is \$32,659.42 and/or \$32,636.24 respectively and since either is greater than the Max Cost value calculated above the use of a wet scrubber or dry scrubber with baghouse is not considered cost effective.

APC Device	Total Annualized Cost	Quantity of SOx & PM10 Controlled per yr	Aggregate Max Cost Threshold for SOx & PM10	Cost effective
Wet Scrubber	\$32,659.42	0.745 tons SOx 1.664 tons PM10	\$32,603.10	No
Dry Scrubber with Baghouse	\$32,636.24	0.745 tons SOx 1.664 tons PM10	\$32,603.10	No

C. SELECTION OF BACT:

No technologically feasible control technologies were found to be cost effective and therefore not selected. BACT will be standards that have been achieved in practice.

BACTI	BACT For A Pet Crematory: 4.5 MMBtu/hr Burners @ 4,380 hours/year of operation (19,710 MMBtu/year) and ≤ 681 Tons Charge/year							
Pollutant	Standard	Source						
VOC	No Standard, Natural gas fuel and a secondary combustion chamber (afterburner) ≥ 1600 °F	SMAQMD, SJVUAPCD						
NOx	60 ppm at 3% O2 or 0.073 lb/MMBTU, measured as emissions from the fuel burning, not with the charge => $1200 ^\circ\text{F}$	SCAQMD						
SOx	No Standard, Natural Gas Fired	SCAQMD, SMAQMD, BAAQMD, SJVAPCD						
PM10	No Standard, Natural gas-fired with secondary chamber operating at ≥1600 °F	SMAQMD, SJVAPCD, BAAQMD						
PM2.5	No Standard, Natural gas-fired with secondary chamber operating at ≥1600 °F	SMAQMD, SJVAPCD, BAAQMD						
CO	No Standard, Secondary Chamber => 1500 °F	BAAQMD						

D. SELECTION OF T-BACT:

There are no Federal NSPS's, NESHAP's nor State ATCM's for this source category. None of the sources surveyed have any toxic T-BACT determinations published. The District contacted the SCAQMD, the BAAQMD and the SJVAPCD to enquire about any T-BACT determinations that may not have been published for this source category. In all cases, the T-BACT determinations were essentially the crematory's operational parameters that have been required as BACT. Therefore, T-BACT standards will be considered as meeting the BACT standards identified above.

REVIEWED BY: DATE:

APPROVED BY: _____ DATE: _____

Appendix A Cost Analysis

SCR COST EFFECTIVENESS CALCULATION EPA AIR POLLUTION CONTROL COST MANUAL, Sixth Edition, EPA/452/B-02-001, January 2002 Section 4.2 - NOx Post-Combustion, Chapter 2 - Selective Catalytic Reduction

Cost Effectiveness =	\$	25,245.92	\$/ton					
Equipment								
Crematory rating		4.952057895						
Crematory Operating hours			hours					
Crematory capacity factor SCR Operating Days		1	days					
Total Capacity Factor		1						
Baseline Nox (400 lb/hr burn rate, 3.56 lb/ton of charge*, 4.5		1						
MMBTU/hr)								
*Nox emission Rate from AP-42 Table 2.3-1 Medical waste								
incineration		2.31E-01	lb/mmBTU					
SCR Nox (90% control)			lb/mmBTU					
Ammonia Slip			ppm					
Ammonia Stochiometric Ratio		1.05						
Stored Ammonia Conc			%					
Amonnia Storage days Sulfur Content		90 0.005	days					
Pressure drop for SCR Ductwork			% inches W.G.	Polling A	Tort Provide			
Pressure drop for each Catalyst Layer			inche W.G.	Rolling Acres 3/20/2013	rest Results		AVE	
Temperature at SCR Inlet			degrees F	5/20/2013	1675		1641.67	
Cost year		1998		1475	10/5	1//5	1041.07	
Equipment Life			years					
Annual interest Rate			%					
Catalyst cost, Initial		240	\$/ft2					
Catalyst cost, replacement			\$/ft2					
Electrical Power cost			\$/KWh					
Ammonia Cost		0.101						
Catalyst Life Catalyst Layers	26.0	24000	hr					
Catalyst Layers	z tuli,	1 empty						
Crematory Calculations								
Q _B		4.952057895	mm PTU/br					
			acfm	2012				
Qflue gas			actm	3013	3736	3274	3341	
N _{NOx}		0.9						
SCR Reactor Calculations								
Vol _{catalyst}		268.8836586						
A _{Catalyst}		3.480208333						
A _{SCR}		4.002239583						
I=w=		2.000559817	ft					
n _{layer}		25						
h _{layer}		4.090431754						
n _{total}		26						
h _{scR}		297.3512256	ft					
Reagent Calculations								
m _{reagent}		0.444579473	lb/hr					
m _{sol}		1.533032667						
q _{sol}		0.204796739						
Tank Volume		442.3609561						
			0					
Cost Estimation								
Direct Costs								
DC	\$	274,821.29						
Indirect Costs								
General Facilites	¢	13,741.06						
Engineering and home office fees	\$ \$	13,741.06 27,482.13						
	Ş							
Process Contingency Total Indirect Installation Costs	\$ \$	13,741.06 54 964 26						
Process Contingency Total Indirect Installation Costs Project Contingency	> \$ \$	13,741.06 54,964.26 49,467.83						

		1.93 tons		tons
			LB of Nox	controlled based on 90%
0				
5.6/				
F (7			stion at 60	ppm
2.11				
				(B) Burn rate of the crematory
3.56	NOX Ib	/ton(A)		400 lb/hr (B)
	\$	25,245.92	per ton	
		1.74	tons per y	year
	Ş	43,843.62	per yr	
		· · · · · · · · · · · · · · · · · · ·		
	\$	12,775.87	per yr	
	\$			
	Ş	989.39	per yr	
	¢			
		0.247200565		
	\$	1,356.37	per yr	
		7.647609093	KW	
	\$	5,807.59	per yr	
	\$	387,172.89		
		334.45		
	\$	7,585.07		
	2.11	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ 387,172.89 \$ 5,807.59 7.647609093 \$ 4,622.52 \$ 1,356.37 0.317208565 \$ 989.39 \$ 6,968.28 \$ 12,775.87 0.080242587 \$ 31,067.75 \$ 31,067.75 \$ 31,067.75 \$ 31,067.75 \$ 31,067.75 \$ 31,067.75 \$ 31,067.75 \$ 31,067.75 \$ 31,067.75 \$ 32,245.92 1.74 \$ 25,245.92 3.56 NOX lb/ton(A) (A) - Table 2.3-1 AP-42, 2.3 Medical Waste Incineration 2.11 Nox lb/ton (C) (C) - Natural gas combu 5.67 Combined Nox lb/ton of b of Nox based on e 3.56 lb of Nox ton of x. charge	\$ 387,172.89 \$ 5,807.59 per yr 7.647609093 KW \$ 4,622.52 per yr \$ 1,356.37 per yr \$ 0.317208565 \$ 989.39 per yr \$ 6,968.28 per yr \$ 12,775.87 per yr \$ 31,067.75 per yr \$ 32,245.92 per ton 3.56 NOX lb/ton(A) (C) - Natural gas combustion at 60 5.67 Combined Nox bl/ton b of Nox based on e 3.56 lb of Nox/ton of x. charge LB of Nox

BACT Template Version 071315

PM10 Baghouse Cost Effective Requirements
D110 . //

PM Cost effective Number		11400	\$/ton
PM emission from Crematory			tons/yer
CRF (5% interest and 20 year life)	0.08	0242587	
Particulate Matter Control (Ba	ag Hou	se) Cost A	Analysis
Gas to cloth ratio for shaker or reverse air bag house		1.8	
A		9	
В		0.8	
L		0.1	
D (mass mean diameter of particle, 7 um guess)		7	
v	4.95	8928378	equation 1.11
acfm of system		3341	
Bag Size	673.	7342719	
Cost of Bag house common housing design	\$ 7	7,132.96	\$
Cost of insulation	\$ 2	2,543.43	\$
Cost of BAG Nextel, bottom bag removal	\$ 11	1,231.15	high Temp Bags
Bag house cages		50.20	
cage cost		12.23	\$/cage
Total cage costs	\$	613.96	\$
Equipment Costs (A)	\$ 21	L,521.50	
Instrumentation	\$	4	0*A
California Sales taxes	\$ 1	,829.33	0.085*A
Freight		,076.08	
Purchase Equipment Cost (PEC)		,426.90	
Direct & Indirect Installation Costs (DC & IC)	\$ 4	,885.38	0.2*PEC
Total Capital Investment (TCI)	\$2	9,312.28	
Direct Annual Costs			
Operating Labor	\$	4,073.40	(.5 hr/shift) (1 shift/8 hrs)(4380 hrs/yr)*\$14.88
Supervisor		\$611.01	15% of operating Labor
Maintenance Labor	\$	4,864.54	(.5 hr/shift) (1 shift/8 hrs)(4380 hrs/yr)*\$17.77
Material	\$	4,864.54	100% of maintenance labor
Electricity	\$	3,764.83	(0.000181)(3341 acfm)(10.3 in H2O)(4380 hr/yr)(\$0.138 kW/h)
Total Annual DC	\$ 18	8,178.32	
Indirect Annual Costs			
Overhead	\$	8,648.09	60% of total labor and material
Admin charges			2% of TCI
Property Tax		\$293.12	1% of TCI
Insurance		\$293.12	1% of TCI
Capital Recovery	\$:	2,352.09	
Total Annual IC	\$13	2,172.68	
Total Annal Costs (DAC + DIC)	\$30	0,351.00	
TAC/tons controlled	\$1	8,239.78	

PM10 Venturi Cost Effecive Analysis Total PM PM Cost effectiveness

1.664 Tons/year 11400 \$/tons controlled

CRF (5% interest and 15 year life) 0.096342288

From Table 2.8 Direct and Indirect Installation Costs for Venturi Scrubbers, EPA Control Cost Manual 6th edition, 1-02

Ventur Packaged Unit (A1) Additional Equipement (A2) Equipment Costs (A)	\$14,107.89 150*Q(sat)^0.56 3341 acfm low energy cabon ste \$11,286.31 80% of Unit \$25,394.20 A=A1 + A2	el
Instrumentation (assumed to be included per Section 6, Ch. 2, Table 2.5) California Sales taxes Freight Purchase Equipment Cost (PEC)	\$0.00 0*A \$2,158.51 0.085*A \$1,269.71 0.05*A \$28,822.42	
Direct Installation Costs, DC Total Indirect Costs, IC	\$16,140.56 0.56*PEC \$10,087.85 0.35*PEC	
Total Capital Investment (TCI)	\$55,050.82	
Direct Annual Costs: Operating Labor Supervisor Electricity Maintenance Labor Material Total Annual DC	\$4,073.40 (.5 hr/shift) (1 shift/8 hrs)(4380 hrs/yr)*\$14.88 \$611.01 15% of operating Labor \$6,310.23 (0.7457)(13 hp + 1 hp)(4380 hr/yr)(\$0.138 kW/h) \$4,864.54 (.5 hr/shift) (1 shift/8 hrs)(4380 hrs/yr)*\$17.77 \$4,864.54 100% of maintenance labor \$20,723.72	
Indirect Annual Costs: Overhead Admin charges Property Tax Insurance Capital Recovery Total IAC	\$5,837.45 60% of total labor and material \$576.45 2% of TCI \$288.22 1% of TCI \$288.22 1% of TCI \$5,303.72 \$12,294.07	
Total Annual Costs (DAC +IAC)	\$33,017.79	
Cost Effectiveness	\$19,842.42 \$/Ton Controlled	

Cost Effective Requirements SOx Wet Scrubber						
SOx Cost effective Number) \$/ton			
SOx emissions			5 tons/yer			
CRF (5% interest and 15 year life)	(0.096342288				
				Figure 1.4 pg 1-27, Setion 5.2		
				Post Combstion Controls,		
				Chapter 1 Wet Scrubbers for		
SOx Control (Packed To	wer	Cost Analy	SIS	Acid Gas		
Total Capital Investment				Founties 1.40 as 1.24 Cation		
				Equation 1.40 pg 1-24, Setion 5.2 Post Combstion Controls,		
				Chapter 1 Wet Scrubbers for		
Tower Cost	Ś	7,935.00	69 ft^2	Acid Gas		
	Т		00 11 2			
Packing Costs	\$	207.00				
AUX Eq (fan & Pump)	\$	5 C C C	1/2 the tower costs Guess			
Euipment Costs (A)	\$	12,213.00				
Instrumentation (assumed to be included per Section 6,		40.00	0*4			
Ch. 2, Table 2.5) California Sales taxes	ć	\$0.00				
Freight	\$ \$		0.085*A 0.05*A			
Purchase Equipment Cost (PEC)		13,861.76				
	Ŷ	15,001.70				
DC	\$	11,782.49	0.85*PEC			
IC	\$		0.35*PEC			
Total Capital Investment (TCI)	\$	30,495.86				
				Table 1.4, pg 1-28, Setion 5.2		
				Post Combstion Controls,		
Direct Annual Costs				Chapter 1 Wet Scrubbers for		
Operating Labor	\$	1 072 10	(.5 hr/shift) (1 shift/8 hrs)(4380 hr	Acid Gas		
Supervisor	\$		15% of operating Labor	5/91) \$14.00		
Solvent (water)	Ļ	011.01	13% of Operating Labor			
Caustic replacement						
Watewater disposal						
Maintenance Labor	\$	4,864.54	(.5 hr/shift) (1 shift/8 hrs)(4380 hr	rs/yr)*\$17.77		
Material	\$		100% of maintenance labor			
Electricity	\$	5,439.96	(9 kW)(4380 hr/yr)(\$0.138 kWh)			
Total AC	\$	19,853.45				
Indirect Annual costs	~	0 6 40 00	60% of total labor and material			
Overhead Admin.charges	\$ \$		60% of total labor and material co 2% of TCI	OSTS		
Admin charges Property Tax	ې \$		2% of TCI 1% of TCI			
Insurance	ې \$		1% of TCI			
Capital Recovery	\$	2,938.04				
Total IC		12,805.97				
	7	,0001.07				
Total annual costs (DC + IC)	\$	32,659.42				
12. 12						
TAC/Ton of SOx controlled	\$	43,838.15				

Cost Effective Requireme	nts S		
SOx Cost effective Number			\$/ton
SOx emissions		0.745	tons/yer
CRF (5% interest and 15 year life)	1	0.096342288	
SOx Control (Bag Hou	se) (Cost Analysis	
Gas to cloth ratio for shaker or reverse air bag house		1.8	
A		9	
В		0.8	
L		0.1	
D (mass mean diameter of particle, 7 um guess)		7	
V	8	4.958928378	equation 1.11
acfm of system		3341	acfm
Bag Size	- 1	673.7342719	ft^2
Cost of Bag house common housing design		\$7,132.96	\$
Cost of insulation		\$2,543.43	\$
Cost of BAG Nextel, bottom bag removal		\$11,231.15	high Temp Bags
Bag house cages		50.20	s summer recommendation encountered
cage cost		12.23	\$/cage
Total cage costs		\$613.96	\$
Equipment Costs (A)		\$21,521.50	
Instrumentation		\$0.00	0*A
California Sales taxes		\$1,829.33	0.085*A
Freight		\$1,076.08	0.05*A
Purchase Equipment Cost (PEC)		\$24,426.90	
Direct & Indirect Installation Costs (DC & IC)		\$4,885.38	0.2*PEC
Total Capital Investment (TCI)		\$29,312.28	
Direct Annual Costs			
Operating Labor	\$		(.5 hr/shift) (1 shift/8 hrs)(4380 hrs/yr)*\$14.88
Supervisor	\$		15% of operating Labor
Maintenance Labor	\$		(.5 hr/shift) (1 shift/8 hrs)(4380 hrs/yr)*\$17.77
Material	\$		100% of maintenance labor
Electricity Baghouse	\$		(0.000181)(3341 acfm)(10.3 in H2O)(4380 hr/yr)(\$0.138 kW/h)
Electricity Dry Injection Blower	\$		(3 kW)(4380 hr/yr)(\$0.138 kWh)
Total Annual DC	\$	19,991.64	
Indirect Annual Costs			
Overhead	\$		60% of total labor and material
Admin charges	\$		2% of TCI
Property Tax	\$		1% of TCI
Insurance	\$		1% of TCI
Capital Recovery	\$	2,824.01	
Total Annual IC	\$	12,644.60	
Total Annal Costs (DAC + DIC)	\$	32,636.24	
TAC/tons controlled	\$	43,807.03	

Appendix B Crematory Potential to Emit

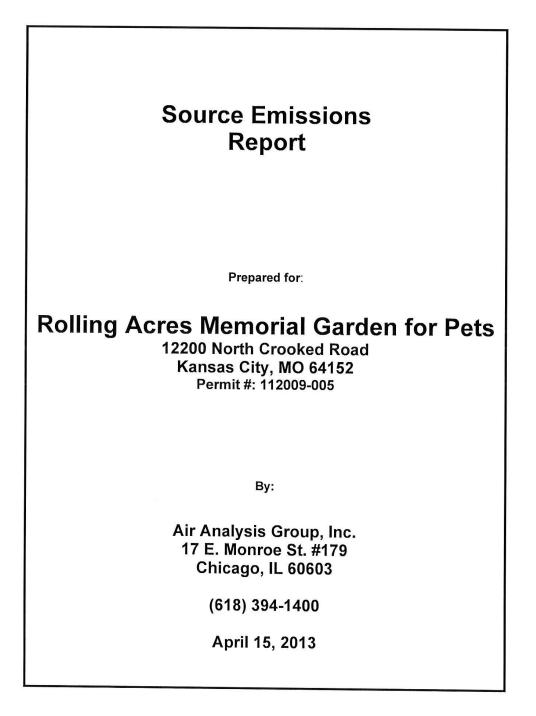
A/C 25091:

Rating:	

4500 cf 400 lb/hr 12 hr/day

681 tons charge/year Emission Maximum Allo

ger tene enalger, jear						
Pollutant	Emission Factor (A)	Maximum Allowable Emissions (B)				
	(lb/MMcf)	(lb/day)	(lb/quarter)	(lb/year)		
VOC	5.4	0.3	27	106		
NOx	72.8	3.9	362	1435		
SOx	0.6	0.0	3	12		
PM10	7.5	0.4	37	148		
PM2.5	7.5	0.4	37	148		
CO	82.4	4.4	409	1624		
Lead	0.0005	0.0	2.5E-03	9.9E-03		
GHG	120138	6487.5	596846	2367920		


Pollutant	Emission Factor (A)	Maximum	sions (B)	
	(lb/ton)	(lb/day)	(lb/quarter)	(lb/year)
VOC	0.299	0.7	66	204
NOx	3.56	8.5	786	2424
SOx	2.17	5.2	479	1478
PM10	4.67	11.2	1031	3180
PM2.5	4.67	11.2	1031	3180
CO	2.95	7.1	651	2009

Combined:

Pollutant Maximum Allowable Emissions (B)				
rollutarit	(lb/day)	(lb/quarter)	(lb/year)	(ton/year)
VOC	1.0	93	310	0.155
NOx	12.5	1148	3859	1.930
SOx	5.2	482	1490	0.745
PM10	11.6	1068	3328	1.664
PM2.5	11.6	1068	3328	1.664
CO	11.5	1061	3633	1.817

Appendix C

Rolling Acres Memorial Garden for Pets Test

METHOD 5	- DETERI	AINATION OF	PARTICULA	TE EMISSIO	NS - RESULT	rs
Plant Name Rolling Acre	s Memorial (Gardens		1	Data	03/20/12
Sampling Location Kanasas City, MO				Date 03/20/13 Project #		
Operator Joe Nasseri					Stack Type	
						1
		Historica	Data			
Run Number		R-1	R-2	R-3	Average	
Run Start Time		13:00	16:00	18:25		hh:mm
Run Stop Time		14:25	17:05	19:38		hh:mm
Meter Calibration Factor		0.969	0.969	0.969		
Pitot Tube Coefficient		0.840	0.840	0.840		
Actual Nozzle Diameter	(D _{na})	0.490	0.490	0.580		in
		Stack Tes				3
Initial Meter Volume	(V _m) _i	321.980	354.590	391.325		ft ³
Final Meter Volume	(V _m) _f	354.490	391.100	423.800		ft ³
Total Meter Volume	(V _m)	32.510	36.510	32.475	33.832	ft ³
Total Sampling Time	(□)	60.0	60.0	60.0	60.0	min
Average Meter Temperature	tiniung	51.0	56.8	70.4	59.4	°F
Average Stack Temperature	(t _s) _{avg}	814.3	1244.1	1493.5	1184.0	°F
Barometric Pressure	(P _b)	29.45	29.45	29.45	29.45	in Hg
Stack Static Pressure	(P _{static})	-0.09	-0.09	-0.09	-0.09	in H ₂ O
Absolute Stack Pressure	(P _s)	29.44	29.44	29.44	29.44	in Hg
Average Orifice Pressure Drop	(⊟H) _{avg}	1.10	1.36	1.02	1.16	in H ₂ O
Absolute Meter Pressure	(P _m)	29.53	29.55	29.52	29.54	in Hg
vg Square Root Pitot Pressure	(□p ^{1/2}) _{avg}	0.23	0.25	0.21	0.23	(in H ₂ O) ^{1/2}
		Moisture Con	tent Data			
Impingers Water Volume Gain	(V _n)	81.0	139.0	115.0	111.7	ml
Impinger Weight Gain	(W _n)	7.1	8.0	7.1	7.4	g
Total Water Volume Collected	(V _{ic})	88.1	147.0	122.1	119.1	ml
Standard Water Vapor Volume	(V _w) _{std}	4.147	6.920	5.748	5.605	scf
Standard Meter Volume	(V _m) _{std}	32.127	35.699	30.915	32.914	dscf
Calculated Stack Moisture	(B _{ws(calc)})	11.4	16.2	15.7	14.4	%
Saturated Stack Moisture	(B _{ws(svp)})	100.00	100.0	100.0	100.0	%
ported Stack Moisture Content	(B _{ws})	11.4	16.2	15.7	14.4	%
		Gas Analys	is Data			
Carbon Dioxide Percentage	(%CO ₂)	6.0	7.9	10.2	8.0	%
Oxygen Percentage	(%O ₂)	11.7	10.1	7.1	9.7	%
Carbon Monoxide Percentage	(%CO)	0.0	0.0	0.0	0.0	%
Dry Gas Molecular Weight	(M _d)	29.43	29.67	29.91	29.67	lb/lb-mole
et Stack Gas Molecular Weight	(M _s)	28.12	27.77	28.05	27.98	lb/lb-mole
		Volumetric Flov				
Average Stack Gas Velocity	(v _s)	20.87	25.89	22.69	23.15	ft/sec
Stack Cross-Sectional Area	(A _s)	2.41	2.41	2.41		ft ²
Actual Stack Flow Rate	(Q _{aw})	3013	3736	3274	3341	acfm
Wet Standard Stack Flow Rate	(Q _{sw})	74	68	52	65	wkscfh
Dry Standard Stack Flow Rate	(Q _{sd})	1088	954	734	925	dscfm
Percent of Isokinetic Rate	(I)	90.4	114.5	92.0	99.0	%
		Emission Ra				
Mass of Particulate on Filter	(m _f)	7.750000000	16.70000000	27.750000000	17.40000000	mg
Mass of Particulate in Acetone	(m _a ')	7.700000000	5.300000000	10.30000000	7.766666667	mg
Mass due to Acetone Blank	(W _a)	0.00000	0.00000	0.00000	0.00000	mg
Total Mass of Particulates	(m _n)	15.450000000	22.00000000	38.05000000	25.166666667	mg
Stack Particulate Concentration	(C _s)	0.000480905	0.000616260	0.001230789	0.000775985	g/dscf
	(C _s)	0.007421505	0.009510357	0.018993996	0.011975286	gr/dscf
Particulate Emission Rate	(E)	0.031390842	0.035281900	0.054233220	0.040301987	kg/hr
	(E)	0.069205017	0.077783338	0.119563881	0.088850745	lbs/hr

Rolling - M5 - Results

Page 1

Printed 4/4/2013 V1.15

FACILITY DESCRIPTION

The facility tested is an Animal Incinerator. This plant includes the following equipment:

EQUIPMENT	MANUFACTURED BY	MODEL
Incinerator	Matthews	IEB Series 56

The fuel used for the incinerator during testing was natural gas.

PROCESS OPERATION

On March 20, 2013, the following process data was recorded by the plant operators:

TEST RUN	BURN TEMPERATURE	TEMPERATURE AT THE	AVERAGE
NUMBER	AT START (⁰ F)	END (⁰ F)	TEMPERATURE (⁰ F)
Run 1	1400	1550	1475
Run 2	1675	1675	1675
Run 3	1775	1775	1775

The weight processed was approximately 2,488 pounds.